imbaseline
- imbaseline(imagename, linefile='', output_cont=False, bloutput='', maskmode='list', chans='', thresh=5.0, avg_limit=4, minwidth=4, edge=[0, 0], blfunc='poly', order=5, npiece=3, applyfft=True, fftthresh=3.0, addwn=[0], rejwn='', blparam='', clipniter=0, clipthresh=3.0, dirkernel='none', major='', minor='', pa='', kimage='', scale=-1.0, spkernel='none', kwidth=5)[source]
Image-based baseline subtraction for single-dish data
[Description] [Examples] [Development] [Details]
- Parameters
imagename (path) - Name of the input spectral line image
linefile (path=’’) - output continuum subtracted image file name. If it is not specified, it will be imagename + “_bs”.
output_cont (bool=False) - output continuum image. Name will be imagename + “.cont”
bloutput (path=’’) - name of file in which best-fit parameters are written. No output if “” (default).
maskmode (string=’list’) - mode of setting additional channel masks. “list” and “auto” are available now.
blfunc (string=’poly’) - baseline model function [“poly”, “chebyshev”, “cspline”, “sinusoid”, or “variable”(expert mode)]
blfunc = poly
order (int=5) - order of baseline model function
clipthresh (double=3.0) - clipping threshold for iterative fitting
clipniter (int=0) - maximum iteration number for iterative fitting
blfunc = chebyshev
order (int=5) - order of baseline model function
clipthresh (double=3.0) - clipping threshold for iterative fitting
clipniter (int=0) - maximum iteration number for iterative fitting
blfunc = cspline
npiece (int=3) - number of element polynomials for cubic spline curve
clipthresh (double=3.0) - clipping threshold for iterative fitting
clipniter (int=0) - maximum iteration number for iterative fitting
blfunc = sinusoid
applyfft (bool=True) - automatically set wave numbers of sinusoids
fftthresh (double=3.0) - threshold to select wave numbers of sinusoids
addwn (intVec=[0]) - additional wave numbers to use
rejwn (intVec=’’) - wave numbers NOT to use
clipthresh (double=3.0) - clipping threshold for iterative fitting
clipniter (int=0) - maximum iteration number for iterative fitting
blfunc = variable
blparam (string=’’) - text file that stores per spectrum fit parameters
dirkernel (string=’none’) - Type of kernel to use to direction plane smoothing. Acceptable values are “none” to omit smoothing(default), “boxcar” for a boxcar kernel, “gaussian” for a gaussian kernel, “image” to use an image as the kernel.
dirkernel = gaussian
major (string=’’) - Major axis for the kernels. Standard quantity representation. Must be specified for dirkernel=”boxcar” or “gaussian”.
minor (string=’’) - Minor axis. Standard quantity representation. Must be specified for dirkernel=”boxcar” or “gaussian”.
pa (string=’’) - Position angle used only for gaussian kernel. Standard quantity representation.
dirkernel = boxcar
spkernel (string=’none’) - Type of spectral smoothing kernel. Acceptable values are “none” to omit smoothing(default), “gaussian” for a gaussian kernel, “boxcar” for a boxcar kernel.
- Description
imbaseline is a task to do image-based baseline subtraction for single-dish data. This task is based on sdbaseline. Input file format of sdbaseline is Measurement Set, while CASA Image format is used for the input of imbaseline. The computing processes of fitting and subtracting are common in both tasks, and the options of imbaseline consist of subset of sdbaseline.
If users need to reduce the noise in input data before baseline subtraction, imbaseline can make smoothing in the spatial plane and/or spectral axis setting parameters of dirkernel and spkernel, respectively. These features are based on imsmooth and sdsmooth, respectively.
Spatial plane smoothing performs a Fourier-based convolution to smooth the spatial plane of input data using a user-specified smoothing kernel. The parameter dirkernel can be specified as gaussian, boxcar, or image. They are same parameters kernel of the task imsmooth. Usage of parameters related dirkernel is same as those used in imsmooth.
Spectral axis smoothing can be performed using a user-specified smoothing kernel. The parameter spkernel can be specified as gaussian or boxcar. They are same parameters kernel of the task sdsmooth. Usage of parameters related spkernel is same as those used in sdsmooth.
Baseline fitting and subtraction can be performed with specifying a parameter blfunc either poly, chebyshev, cspline, sinusoid, or variable. The parameter maskmode can be specified as list or auto. Usage of parameters related blfunc and maskmode are same as those used in sdbaseline.
- Note
The format of the file specified by bloutput should be CSV format when using imbaseline.
If the parameter output_cont sets True, the output continuum image is saved by subtracting an output image from an input image. The file will be named as imagename + “.cont”.
- Example
Example 1
This is one of the simplest examples fitting baselines using the sinusoidal function and subtracting. No smoothing processes are applied.
imbaseline(imagename='my_image.im', linefile='output.im', blfunc='sinusoid')
Example 2
Following example shows baseline fitting and subtracting smoothing with the spatial plane. Parameters such as major, minor, and pa, should be specified when dirkernel=’gaussian’.
imbaseline(imagename='my_image.im', linefile='output.im', blfunc='sinusoid', dirkernel='gaussian', major='20arcsec', minor='10arcsec', pa='0deg')
Example 3
Following examples shows baseline fitting and subtracting smoothing with the spectral axis.
imbaseline(imagename='my_image.im', linefile='output.im', spkernel='boxcar', kwidth=5)
- Development
No additional development details
- Parameter Details
Detailed descriptions of each function parameter
imagename (path)
- Name of the input spectral line imagelinefile (path='')
- output continuum subtracted image file name. If it is not specified, it will be imagename + “_bs”.output_cont (bool=False)
- output continuum image. Name will be imagename + “.cont”bloutput (path='')
- name of file in which best-fit parameters are written. No output if “” (default).maskmode (string='list')
- mode of setting additional channel masks. “list” and “auto” are available now.chans (string='')
- Channels to be included in the fittingthresh (double=5.0)
- S/N threshold for linefinderavg_limit (int=4)
- channel averaging for broad linesminwidth (int=4)
- the minimum channel width to detect as a lineedge (intVec=[0, 0])
- channels to drop at beginning and end of spectrumblfunc (string='poly')
- baseline model function [“poly”, “chebyshev”, “cspline”, “sinusoid”, or “variable”(expert mode)]order (int=5)
- order of baseline model functionnpiece (int=3)
- number of element polynomials for cubic spline curveapplyfft (bool=True)
- automatically set wave numbers of sinusoidsfftthresh (double=3.0)
- threshold to select wave numbers of sinusoidsaddwn (intVec=[0])
- additional wave numbers to userejwn (intVec='')
- wave numbers NOT to useblparam (string='')
- text file that stores per spectrum fit parametersclipniter (int=0)
- maximum iteration number for iterative fittingclipthresh (double=3.0)
- clipping threshold for iterative fittingdirkernel (string='none')
- Type of kernel to use to direction plane smoothing. Acceptable values are “none” to omit image smoothing(default), “boxcar” for a boxcar kernel, “gaussian” for a gaussian kernel, “image” to use an image as the kernel.major (string='')
- Major axis for the kernels. Standard quantity representation. Must be specified for dirkernel=”boxcar” or “gaussian”.minor (string='')
- Minor axis. Standard quantity representation. Must be specified for dirkernel=”boxcar” or “gaussian”.pa (string='')
- Position angle used only for gaussian kernel. Standard quantity representation.kimage (path='')
- Kernel image name. Only used if dirkernel=”image”.scale (double=-1.0)
- Scale factor. -1.0 means auto-scale. Only used if dirkernel=”image”.spkernel (string='none')
- Type of spectral smoothing kernel. Acceptable values are “none” to omit smoothing(default), “gaussian” for a gaussian kernel, “boxcar” for a boxcar kernel.kwidth (int=5)
- smoothing kernel width in channel. Only used if spkernel=”gaussian” or “boxcar”.